Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x.
`1/(x + sqrt(x^2 - 1)`
उत्तर
`int 1/(x + sqrt(x^2 - 1)) "d"x`
By rationalisation
= `int (1 xx (x - sqrt(x^2 - 1)))/((x + sqrt(x^2 - 1)) xx (x - sqrt(x^2 - 1))) "d"x`
= `int ((x - sqrt(x^2 - 1)))/((x^2) - (sqrt(x^2 - 1)^2)) "d"x`
= `int ((x - sqrt(x^2 - 1)))/(x^2 - (x^2 - 1)) "d"x`
= `int (x - sqrt(x^2 - 1))/(x^2 - x^2 + 1) "d"x`
= `int (x - sqrt(x^2 - 1)) "d"x`
= `int x "d"x - int sqrt(x^2 - 1) "d"x`
= `x^2/2 - {x/2 sqrt(x^2 - 1) - (1)^2/2 log|x + sqrt(x^2 - 1)|} + "c"`
= `x^2/2 - x/2 sqrt(x^2 - 1) + 1/2 log|x + sqrt(x^2 - 1)| + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`sqrt(3x + 5)`
Integrate the following with respect to x.
`(8x + 13)/sqrt(4x + 7)`
Integrate the following with respect to x.
`("e"^x + 1)^2 "e"^x`
Integrate the following with respect to x.
`[1 - 1/2]"e"^((x + 1/x))`
Integrate the following with respect to x.
`(cos 2x + 2sin^2x)/(cos^2x)`
Integrate the following with respect to x.
`("e"^(3logx))/(x^4 + 1)`
Integrate the following with respect to x.
`"e"^(3x) [(3x - 1)/(9x^2)]`
Integrate the following with respect to x.
`sqrt(4x^2 - 5)`
Choose the correct alternative:
`int logx/x "d"x, x > 0` is
Evaluate the following integral:
`sqrt(9x^2 + 12x + 3) "d"x`