Advertisements
Advertisements
Question
Integrate the following with respect to x.
`1/(x + sqrt(x^2 - 1)`
Solution
`int 1/(x + sqrt(x^2 - 1)) "d"x`
By rationalisation
= `int (1 xx (x - sqrt(x^2 - 1)))/((x + sqrt(x^2 - 1)) xx (x - sqrt(x^2 - 1))) "d"x`
= `int ((x - sqrt(x^2 - 1)))/((x^2) - (sqrt(x^2 - 1)^2)) "d"x`
= `int ((x - sqrt(x^2 - 1)))/(x^2 - (x^2 - 1)) "d"x`
= `int (x - sqrt(x^2 - 1))/(x^2 - x^2 + 1) "d"x`
= `int (x - sqrt(x^2 - 1)) "d"x`
= `int x "d"x - int sqrt(x^2 - 1) "d"x`
= `x^2/2 - {x/2 sqrt(x^2 - 1) - (1)^2/2 log|x + sqrt(x^2 - 1)|} + "c"`
= `x^2/2 - x/2 sqrt(x^2 - 1) + 1/2 log|x + sqrt(x^2 - 1)| + "c"`
APPEARS IN
RELATED QUESTIONS
Integrate the following with respect to x.
`sqrt(x)(x^3 - 2x + 3)`
Integrate the following with respect to x.
If f'(x) = 8x3 – 2x and f(2) = 8, then find f(x)
Integrate the following with respect to x.
`(x^3 + 3x^2 - 7x + 11)/(x + 5)`
Integrate the following with respect to x.
`(2x + 5)/(x^2 + 5x - 7)`
Integrate the following with respect to x.
`"e"^(3x) [(3x - 1)/(9x^2)]`
Integrate the following with respect to x.
`1/(x^2 + 3x + 2)`
Integrate the following with respect to x.
`1/sqrt(x^2 + 6x + 13)`
Integrate the following with respect to x.
`sqrt(4x^2 - 5)`
Integrate the following with respect to x.
`sqrt(2x^2 + 4x + 1)`
Choose the correct alternative:
`int "e"^(2x) [2x^2 + 2x] "d"x`