Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x.
`"e"^(3x) [(3x - 1)/(9x^2)]`
उत्तर
`"e"^(3x) [(3x - 1)/(9x^2)] = "e"^(3x) [1/(3x) - 1/(9x^2)]`
= `"e"^(3x)/9 [3(1/x) + (- 1)/x^2]`
Let f(x) = `1/x`
∴ f'(x) = `(- 1)/x^2`
So `int "e"^(3x) [(3x - 1)/(9x^2)] "d"x = 1/9 int "e"^(3x) [3(1/x) - 1/x^2] "d"x`
= `1/9 int "e"^("a"x) ["a" "f"(x) + "f'"(x)] "d"x`
= `1/9 ["e"^("a"x) "f"(x)] + "c"`
= `1/9 ["e"^(3x) (1/x)] + "c"`
= `"e"^(3x)/(9x)+ "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`(x^4 - x^2 + 2)/(x - 1)`
Integrate the following with respect to x.
`(3x^2 - 2x + 5)/((x - 1)(x^2 + 5))`
Integrate the following with respect to x.
`("e"^(3x) +"e"^(5x))/("e"^x + "e"^-x)`
Integrate the following with respect to x.
`(cos 2x + 2sin^2x)/(cos^2x)`
Integrate the following with respect to x.
`x^5 "e"^x`
Integrate the following with respect to x.
`1/(9 - 16x^2)`
Choose the correct alternative:
If `int_0^1 f(x) "d"x = 1, int_0^1 x f(x) "d"x = "a"`, and `int_0^1 x^2 f(x) "d"x = "a"^2`, then `int_0^1 ("a" - x)^2 f(x) "d"x` is
Choose the correct alternative:
`int_0^4 (sqrt(x) + 1/sqrt(x)) "d"x` is
Evaluate the following integral:
`int_0^1 sqrt(x(x - 1)) "d"x`
Evaluate the following integral:
`int_(-1)^1 x^2 "e"^(-2x) "d"x`