Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x.
`sqrt(2x^2 + 4x + 1)`
उत्तर
`int sqrt(2x^2 + 4x + 1) "d"x = int sqrt(2(x^2 +2x +1/2)) "d"x`
= `sqrt(2) int sqrt((x + 1)^2 - 1 + 1/2) "d"x`
= `sqrt(2) int sqrt((x + 1)^2 - 1/2) "d"x`
= `sqrt(2) int sqrt((x + 1)^2 - 1/2) "d"x`
= `sqrt(2) int sqrt((x + 1)^2 - (1/sqrt(2))^2) "d"x`
= `sqrt(2) [((x + 1))/2 sqrt((x + 1)^2 - 1/2) - (1/2)/2log|(x + 1) + sqrt((x + 1)^2 - 1/2)|] + "c"`
= `sqrt(2) [((x + 1))/2 sqrt((2x^2 + 4x + 1)/sqrt(2)) - 1/4 log|(x + 1)+sqrt(x^2 + 4x + 1)/sqrt(2)|] + "c"`
= `((x + 1)/2) sqrt(x^2 + x + 1) - sqrt(2)/4 log|sqrt(2)(x+ 1) + sqrt(x^2 + 4x + 1)| + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`"e"^(xlog"a") + "e"^("a"log"a") - "e"^("n"logx)`
Integrate the following with respect to x.
`("e"^x + 1)^2 "e"^x`
Integrate the following with respect to x.
`("e"^(3x) - "e"^(-3x))/"e"^x`
Integrate the following with respect to x.
`(6x + 7)/sqrt(3x^2 + 7x - 1)`
Integrate the following with respect to x.
`"e"^x [1/x^2 - 2/x^3]`
Integrate the following with respect to x.
`"e"^x/("e"^(2x) - 9)`
Integrate the following with respect to x.
`1/sqrt(9x^2 - 7)`
Choose the correct alternative:
`int[9/(x - 3) - 1/(x + 1)] "d"x` is
Choose the correct alternative:
`int ("d"x)/sqrt(x^2 - 36) + "c"`
Evaluate the following integral:
`int ("d"x)/(2 - 3x - 2x^2)`