Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_{- 1}^1 5 x^4 \sqrt{x^5 + 1}\ d\ x . Then, \]
\[Let\ x^5 + 1 = t . Then, 5 x^4\ dx = dt\]
\[When\ x = - 1, t = 0\ and\ x = 1, t = 2\]
\[ \therefore I = \int_0^2 \sqrt{t}\ dt\]
\[ \Rightarrow I = \left[ \frac{2}{3} t^\frac{3}{2} \right]_0^2 \]
\[ \Rightarrow I = \frac{2}{3}\sqrt{8}\]
\[ \Rightarrow I = \frac{4\sqrt{2}}{3}\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
Γ(n) is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.