हिंदी

Π / 2 ∫ 0 1 2 Cos X + 4 Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]

योग

उत्तर

We have,

\[I = \int_0^\frac{\pi}{2} \frac{1}{2\cos x + 4\sin x} d x\]

\[ = \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{2 - 2 \tan^2 \frac{x}{2} + 8\tan\frac{x}{2}} d x\]

\[\text{Putting }\tan\frac{x}{2} = t\]

\[ \Rightarrow \frac{1}{2}se c^2 \frac{x}{2}dx = dt\]

\[\text{When }x \to 0; t \to 0\]

\[\text{and }x \to \frac{\pi}{2}; t \to 1\]

\[ \therefore I = 2 \int_0^1 \frac{dt}{2 - 2 t^2 + 8t}\]

\[ = - \frac{2}{2} \int_0^1 \frac{dt}{t^2 - 4 t - 1}\]

\[ = - \int_0^1 \frac{dt}{\left( t - 2 \right)^2 - 5}\]

\[ = \int_0^1 \frac{dt}{\left( \sqrt{5} \right)^2 - \left( t - 2 \right)^2}\]

\[ = \frac{1}{2\sqrt{5}} \left[ \log\left| \frac{\sqrt{5} + t - 2}{\sqrt{5} - t + 2} \right| \right]_0^1 \]

\[ = \frac{1}{2\sqrt{5}}\left[ \log\frac{\sqrt{5} - 1}{\sqrt{5} + 1} - \log\frac{\sqrt{5} - 2}{\sqrt{5} + 2} \right] \]

\[ = \frac{1}{2\sqrt{5}}\log\left[ \frac{\sqrt{5} - 1}{\sqrt{5} + 1} \times \frac{\sqrt{5} + 2}{\sqrt{5} - 2} \right]\]

\[ = \frac{1}{2\sqrt{5}}\log\left[ \frac{5 + 2\sqrt{5} - \sqrt{5} - 2}{5 - 2\sqrt{5} + \sqrt{5} - 2} \right]\]

\[ = \frac{1}{2\sqrt{5}}\log\left[ \frac{\sqrt{5} + 3}{- \sqrt{5} + 3} \right]\]

\[I = \frac{1}{2\sqrt{5}}\log \left( \frac{3 + \sqrt{5}}{3 - \sqrt{5}} \times \frac{3 + \sqrt{5}}{3 + \sqrt{5}} \right) \]

\[I = \frac{1}{2\sqrt{5}}log \left( \frac{3 + \sqrt{5}}{2} \right)^2 \]

\[I = \frac{2}{2\sqrt{5}}log \left( \frac{3 + \sqrt{5}}{2} \right) \]

\[I = \frac{1}{\sqrt{5}}log \left( \frac{3 + \sqrt{5}}{2} \right)\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Revision Exercise [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Revision Exercise | Q 58 | पृष्ठ १२२

संबंधित प्रश्न

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Choose the correct alternative:

Γ(1) is


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×