Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
उत्तर
We have,
\[I = \int_0^\frac{\pi}{2} \frac{1}{2\cos x + 4\sin x} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{2 - 2 \tan^2 \frac{x}{2} + 8\tan\frac{x}{2}} d x\]
\[\text{Putting }\tan\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2}se c^2 \frac{x}{2}dx = dt\]
\[\text{When }x \to 0; t \to 0\]
\[\text{and }x \to \frac{\pi}{2}; t \to 1\]
\[ \therefore I = 2 \int_0^1 \frac{dt}{2 - 2 t^2 + 8t}\]
\[ = - \frac{2}{2} \int_0^1 \frac{dt}{t^2 - 4 t - 1}\]
\[ = - \int_0^1 \frac{dt}{\left( t - 2 \right)^2 - 5}\]
\[ = \int_0^1 \frac{dt}{\left( \sqrt{5} \right)^2 - \left( t - 2 \right)^2}\]
\[ = \frac{1}{2\sqrt{5}} \left[ \log\left| \frac{\sqrt{5} + t - 2}{\sqrt{5} - t + 2} \right| \right]_0^1 \]
\[ = \frac{1}{2\sqrt{5}}\left[ \log\frac{\sqrt{5} - 1}{\sqrt{5} + 1} - \log\frac{\sqrt{5} - 2}{\sqrt{5} + 2} \right] \]
\[ = \frac{1}{2\sqrt{5}}\log\left[ \frac{\sqrt{5} - 1}{\sqrt{5} + 1} \times \frac{\sqrt{5} + 2}{\sqrt{5} - 2} \right]\]
\[ = \frac{1}{2\sqrt{5}}\log\left[ \frac{5 + 2\sqrt{5} - \sqrt{5} - 2}{5 - 2\sqrt{5} + \sqrt{5} - 2} \right]\]
\[ = \frac{1}{2\sqrt{5}}\log\left[ \frac{\sqrt{5} + 3}{- \sqrt{5} + 3} \right]\]
\[I = \frac{1}{2\sqrt{5}}\log \left( \frac{3 + \sqrt{5}}{3 - \sqrt{5}} \times \frac{3 + \sqrt{5}}{3 + \sqrt{5}} \right) \]
\[I = \frac{1}{2\sqrt{5}}log \left( \frac{3 + \sqrt{5}}{2} \right)^2 \]
\[I = \frac{2}{2\sqrt{5}}log \left( \frac{3 + \sqrt{5}}{2} \right) \]
\[I = \frac{1}{\sqrt{5}}log \left( \frac{3 + \sqrt{5}}{2} \right)\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate each of the following integral:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
Γ(1) is
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int x^3/(x + 1)` is equal to ______.