हिंदी

Verify the following: dC∫2x+3x2+3xdx=log|x2+3x|+C - Mathematics

Advertisements
Advertisements

प्रश्न

Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`

योग

उत्तर

L.H.S. = `int (2x + 3)/(x^2 + 3x) "d"x`

Put x2 + 3x = t

∴ (2x + 3) dx = dt

⇒ `int "dt"/"t" = log |"t"|`

⇒ `log |x^2 + 3x| + "C"` = R.H.S.

L.H.S. = R.H.S.

Hence verified.

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 2 | पृष्ठ १६३

संबंधित प्रश्न

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 


\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_2^3 e^{- x} dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following:

Γ(4)


Choose the correct alternative:

If n > 0, then Γ(n) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×