Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[I = \int\limits_0^1 \frac{\log \left( 1 + x \right)}{1 + x^2} dx\]
\[Putting\ x = \tan \theta\]
\[ \Rightarrow dx = \sec^2 \theta d\theta\]
\[\text{When }x \to 0 ; \theta \to 0\]
\[\text{and }x \to 1 ; \theta \to \frac{\pi}{4}\]
\[\text{Now, integral becomes}\]
\[I = \int\limits_0^\frac{\pi}{4} \frac{\log \left( 1 + \tan \theta \right)}{\sec^2 \theta} \sec^2 \theta d\theta\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{4} \left[ \log \left( 1 + \tan \theta \right) \right] d\theta ................\left( 1 \right)\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{4} \left[ \log\left\{ 1 + \tan \left( \frac{\pi}{4} - \theta \right) \right\} \right] d\theta ...................\left[ \because \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ = \int\limits_0^\frac{\pi}{4} \left[ \log\left\{ 1 + \frac{\tan\frac{\pi}{4} - \tan \theta}{1 + \tan\frac{\pi}{4} \tan \theta} \right\} \right] d\theta\]
\[ = \int\limits_0^\frac{\pi}{4} \left[ \log\left\{ 1 + \frac{1 - \tan \theta}{1 + \tan \theta} \right\} \right] d\theta\]
\[ = \int\limits_0^\frac{\pi}{4} \left[ \log\left\{ \frac{2}{1 + \tan \theta} \right\} \right] d\theta\]
\[I = \int_0^\frac{\pi}{4} \left[ \log 2 - \log \left( 1 + \tan \theta \right) \right] d\theta . . . . . \left( 2 \right)\]
\[\text{Adding} \left( 1 \right) and \left( 2 \right), \text{we get}\]
\[2I = \int_0^\frac{\pi}{4} \left( \log 2 \right) d\theta\]
\[ \Rightarrow 2I = \left( \log 2 \right) \left[ \theta \right]_0^\frac{\pi}{4} \]
\[ \Rightarrow 2I = \frac{\pi}{4}\log 2\]
\[ \Rightarrow I = \frac{\pi}{8}\log 2\]
\[ \therefore \int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2}dx = \frac{\pi}{8}\log 2\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Write the coefficient a, b, c of which the value of the integral
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following:
`Γ (9/2)`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: