English

1 ∫ 0 Log ( 1 + X ) 1 + X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 

Sum

Solution

We have,

\[I = \int\limits_0^1 \frac{\log \left( 1 + x \right)}{1 + x^2} dx\]

\[Putting\ x = \tan \theta\]

\[ \Rightarrow dx = \sec^2 \theta d\theta\]

\[\text{When }x \to 0 ; \theta \to 0\]

\[\text{and }x \to 1 ; \theta \to \frac{\pi}{4}\]

\[\text{Now, integral becomes}\]

\[I = \int\limits_0^\frac{\pi}{4} \frac{\log \left( 1 + \tan \theta \right)}{\sec^2 \theta} \sec^2 \theta d\theta\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{4} \left[ \log \left( 1 + \tan \theta \right) \right] d\theta ................\left( 1 \right)\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{4} \left[ \log\left\{ 1 + \tan \left( \frac{\pi}{4} - \theta \right) \right\} \right] d\theta ...................\left[ \because \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ = \int\limits_0^\frac{\pi}{4} \left[ \log\left\{ 1 + \frac{\tan\frac{\pi}{4} - \tan \theta}{1 + \tan\frac{\pi}{4} \tan \theta} \right\} \right] d\theta\]
\[ = \int\limits_0^\frac{\pi}{4} \left[ \log\left\{ 1 + \frac{1 - \tan \theta}{1 + \tan \theta} \right\} \right] d\theta\]
\[ = \int\limits_0^\frac{\pi}{4} \left[ \log\left\{ \frac{2}{1 + \tan \theta} \right\} \right] d\theta\]
\[I = \int_0^\frac{\pi}{4} \left[ \log 2 - \log \left( 1 + \tan \theta \right) \right] d\theta . . . . . \left( 2 \right)\]

\[\text{Adding} \left( 1 \right) and \left( 2 \right), \text{we get}\]

\[2I = \int_0^\frac{\pi}{4} \left( \log 2 \right) d\theta\]

\[ \Rightarrow 2I = \left( \log 2 \right) \left[ \theta \right]_0^\frac{\pi}{4} \]

\[ \Rightarrow 2I = \frac{\pi}{4}\log 2\]

\[ \Rightarrow I = \frac{\pi}{8}\log 2\]

\[ \therefore \int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2}dx = \frac{\pi}{8}\log 2\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 95]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 9 | Page 95

RELATED QUESTIONS

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int\limits_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7} - x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 


\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


\[\int\limits_a^b e^x dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

\[\int\limits_0^2 \left[ x \right] dx .\]

Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


\[\int\limits_0^4 x dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


\[\int\limits_2^3 e^{- x} dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×