Advertisements
Advertisements
Question
Solution
We have,
\[I = \int\limits_0^1 \frac{\log \left( 1 + x \right)}{1 + x^2} dx\]
\[Putting\ x = \tan \theta\]
\[ \Rightarrow dx = \sec^2 \theta d\theta\]
\[\text{When }x \to 0 ; \theta \to 0\]
\[\text{and }x \to 1 ; \theta \to \frac{\pi}{4}\]
\[\text{Now, integral becomes}\]
\[I = \int\limits_0^\frac{\pi}{4} \frac{\log \left( 1 + \tan \theta \right)}{\sec^2 \theta} \sec^2 \theta d\theta\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{4} \left[ \log \left( 1 + \tan \theta \right) \right] d\theta ................\left( 1 \right)\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{4} \left[ \log\left\{ 1 + \tan \left( \frac{\pi}{4} - \theta \right) \right\} \right] d\theta ...................\left[ \because \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ = \int\limits_0^\frac{\pi}{4} \left[ \log\left\{ 1 + \frac{\tan\frac{\pi}{4} - \tan \theta}{1 + \tan\frac{\pi}{4} \tan \theta} \right\} \right] d\theta\]
\[ = \int\limits_0^\frac{\pi}{4} \left[ \log\left\{ 1 + \frac{1 - \tan \theta}{1 + \tan \theta} \right\} \right] d\theta\]
\[ = \int\limits_0^\frac{\pi}{4} \left[ \log\left\{ \frac{2}{1 + \tan \theta} \right\} \right] d\theta\]
\[I = \int_0^\frac{\pi}{4} \left[ \log 2 - \log \left( 1 + \tan \theta \right) \right] d\theta . . . . . \left( 2 \right)\]
\[\text{Adding} \left( 1 \right) and \left( 2 \right), \text{we get}\]
\[2I = \int_0^\frac{\pi}{4} \left( \log 2 \right) d\theta\]
\[ \Rightarrow 2I = \left( \log 2 \right) \left[ \theta \right]_0^\frac{\pi}{4} \]
\[ \Rightarrow 2I = \frac{\pi}{4}\log 2\]
\[ \Rightarrow I = \frac{\pi}{8}\log 2\]
\[ \therefore \int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2}dx = \frac{\pi}{8}\log 2\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`