Advertisements
Advertisements
Question
Solution
\[ = \int_0^1 \frac{1}{\left( x^2 + 1 \right)^2 + 2x\left( x^2 + 1 \right)}dx\]
\[ = \int_0^1 \frac{1}{\left( x^2 + 1 \right)\left( x^2 + 1 + 2x \right)}dx\]
\[ = \int_0^1 \frac{1}{\left( x^2 + 1 \right) \left( x + 1 \right)^2}dx\]
\[ \Rightarrow 1 = A\left( x + 1 \right)\left( x^2 + 1 \right) + B\left( x^2 + 1 \right) + \left( Cx + D \right) \left( x + 1 \right)^2\]
D = 0
\[ = \int_0^1 \frac{\frac{1}{2}}{x + 1}dx + \int_0^1 \frac{\frac{1}{2}}{\left( x + 1 \right)^2}dx + \int_0^1 \frac{- \frac{1}{2}x}{x^2 + 1}\]
\[ = \left.\frac{1}{2} \log\left( x + 1 \right)\right|_0^1 + \left.\frac{1}{2} \times \left( - \frac{1}{x + 1} \right)\right|_0^1 - \frac{1}{4} \int_0^1 \frac{2x}{x^2 + 1}dx\]
\[ = \frac{1}{2}\left( \log2 - \log1 \right) - \frac{1}{2}\left( \frac{1}{2} - 1 \right) - \left.\frac{1}{4} \log\left( x^2 + 1 \right)\right|_0^1 \]
\[ = \frac{1}{2}\log2 + \frac{1}{4} - \frac{1}{4}\left( \log2 - \log1 \right) ................\left( \log1 = 0 \right)\]
\[ = \frac{1}{4}\log 2 + \frac{1}{4}\log e\]
\[ = \frac{1}{4}\left( \log 2 + \log e \right)\]
\[ = \frac{1}{4}\log\left( 2e \right)\]
APPEARS IN
RELATED QUESTIONS
If f is an integrable function, show that
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
If n > 0, then Γ(n) is
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.