English

∫ 1 0 1 1 + 2 X + 2 X 2 + 2 X 3 + X 4 D X - Mathematics

Advertisements
Advertisements

Question

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]
Sum

Solution

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]
\[ = \int_0^1 \frac{1}{\left( x^2 + 1 \right)^2 + 2x\left( x^2 + 1 \right)}dx\]
\[ = \int_0^1 \frac{1}{\left( x^2 + 1 \right)\left( x^2 + 1 + 2x \right)}dx\]
\[ = \int_0^1 \frac{1}{\left( x^2 + 1 \right) \left( x + 1 \right)^2}dx\]
Let 
\[\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} = \frac{A}{x + 1} + \frac{B}{\left( x + 1 \right)^2} + \frac{Cx + D}{x^2 + 1}\]
\[ \Rightarrow 1 = A\left( x + 1 \right)\left( x^2 + 1 \right) + B\left( x^2 + 1 \right) + \left( Cx + D \right) \left( x + 1 \right)^2\]
Putting x = −1, we have
1 = 2B
\[\Rightarrow B = \frac{1}{2}\]
Putting x = 0, we have
A + B + D = 1              .....(2)
Equating coefficient of x3 on both sides, we have
A + C = 0                    .....(3)
Equating coefficient of xon both sides, we have
A + B + 2C + D = 0               .....(4)
 2C = −1               [Using (1)]
\[\Rightarrow C = - \frac{1}{2}\]
\[\therefore A = \frac{1}{2}\]
Putting
\[A = \frac{1}{2}, B = \frac{1}{2}\] and
\[C = - \frac{1}{2}\]  in (4), we have
D = 0
\[\therefore \int_0^1 \frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)}dx\]
\[ = \int_0^1 \frac{\frac{1}{2}}{x + 1}dx + \int_0^1 \frac{\frac{1}{2}}{\left( x + 1 \right)^2}dx + \int_0^1 \frac{- \frac{1}{2}x}{x^2 + 1}\]
\[ = \left.\frac{1}{2} \log\left( x + 1 \right)\right|_0^1 + \left.\frac{1}{2} \times \left( - \frac{1}{x + 1} \right)\right|_0^1 - \frac{1}{4} \int_0^1 \frac{2x}{x^2 + 1}dx\]
\[ = \frac{1}{2}\left( \log2 - \log1 \right) - \frac{1}{2}\left( \frac{1}{2} - 1 \right) - \left.\frac{1}{4} \log\left( x^2 + 1 \right)\right|_0^1 \]
\[ = \frac{1}{2}\log2 + \frac{1}{4} - \frac{1}{4}\left( \log2 - \log1 \right) ................\left( \log1 = 0 \right)\]
\[= \frac{1}{2}\log 2 + \frac{1}{4}\log e - \frac{1}{4}\log2\]
\[ = \frac{1}{4}\log 2 + \frac{1}{4}\log e\]
\[ = \frac{1}{4}\left( \log 2 + \log e \right)\]
\[ = \frac{1}{4}\log\left( 2e \right)\]
 
 
shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 68 | Page 18

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_0^\infty e^{- x} dx .\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

If n > 0, then Γ(n) is


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×