Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^1 x \tan^{- 1} x\ d\ x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ \frac{x^2 \tan^{- 1} x}{2} \right]_0^1 - \frac{1}{2} \int_0^1 \frac{x^2}{1 + x^2} dx\]
\[ \Rightarrow I = \left[ \frac{x^2 \tan^{- 1} x}{2} \right]_0^1 - \frac{1}{2} \int_0^1 \left( \frac{1 + x^2}{1 + x^2} - \frac{1}{1 + x^2} \right) dx\]
\[ \Rightarrow I = \left[ \frac{x^2 \tan^{- 1} x}{2} \right]_0^1 - \frac{1}{2} \left[ x - \tan^{- 1} x \right]_0^1 \]
\[ \Rightarrow I = \frac{\pi}{8} - 0 - \frac{1}{2}\left( 1 - \frac{\pi}{4} - 0 \right)\]
\[ \Rightarrow I = \frac{\pi}{4} - \frac{1}{2}\]
APPEARS IN
RELATED QUESTIONS
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
Write the coefficient a, b, c of which the value of the integral
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
`int_0^(2a)f(x)dx`
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.