Advertisements
Advertisements
Question
`int_0^(2a)f(x)dx`
Solution
We have.
`I=int_0^(2a)f(x)dx`
Then,
`I=int_0^af(x)dx+int_a^(2a)f(x)dx`
`I=int_0^af(x)dx+I_1 ......................["where, "I_1=int_a^(2a)f(x)dx]`
Let 2a - t = x then dx = - dt
If t = a ⇒ x = a
If t = 2a ⇒ x = 0
`I_1=int_0^(2a)f(x)dx=int_a^0f(2a-t)(-dt)=-int_a^0f(2a-t)dt`
`I_1=int_0^af(2a-t)dt=int_0^af(2a-x)dx`
`thereforeI=int_0^af(x)dx+int_0^af(2a-x)dx`
`I=int_0^af(x)dx+int_0^af(x)dx=2int_0^af(x)dx............................[f(2a-x=f(x))]`
Hence proved.
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Prove that:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
Find: `int logx/(1 + log x)^2 dx`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.