Advertisements
Advertisements
प्रश्न
`int_0^(2a)f(x)dx`
उत्तर
We have.
`I=int_0^(2a)f(x)dx`
Then,
`I=int_0^af(x)dx+int_a^(2a)f(x)dx`
`I=int_0^af(x)dx+I_1 ......................["where, "I_1=int_a^(2a)f(x)dx]`
Let 2a - t = x then dx = - dt
If t = a ⇒ x = a
If t = 2a ⇒ x = 0
`I_1=int_0^(2a)f(x)dx=int_a^0f(2a-t)(-dt)=-int_a^0f(2a-t)dt`
`I_1=int_0^af(2a-t)dt=int_0^af(2a-x)dx`
`thereforeI=int_0^af(x)dx+int_0^af(2a-x)dx`
`I=int_0^af(x)dx+int_0^af(x)dx=2int_0^af(x)dx............................[f(2a-x=f(x))]`
Hence proved.
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Evaluate each of the following integral:
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
Γ(4)
Choose the correct alternative:
`Γ(3/2)`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`