Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_1^3 \frac{\cos \left( \log x \right)}{x} d\ x . \]
\[Let\ \log\ x = t . Then, \frac{1}{x} dx = dt\]
\[When\ x = 1, t = 0\ and\ x\ = 3, t = \log 3\]
\[ \therefore I = \int_0^{\ log 3} \cos t d t\]
\[ = \left[ \sin t \right]_0^{\ log 3} \]
\[ = \sin \left( \log 3 \right)\]
APPEARS IN
संबंधित प्रश्न
If f(2a − x) = −f(x), prove that
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Solve each of the following integral:
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: