मराठी

The Value of the Integral 2 ∫ − 2 ∣ ∣ 1 − X 2 ∣ ∣ D X Is(A) 4 (B) 2 (C) −2 (D) 0 - Mathematics

Advertisements
Advertisements

प्रश्न

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .

पर्याय

  •  4

  •  2

  • −2

  • 0

MCQ

उत्तर

4

\[\text{We have}, \]
\[I = \int_{- 2}^2 \left| 1 - x^{{}^2} \right| d x\]
\[\left| 1 - x^{2} \right| = \begin{cases}- \left( 1 - x^{2} \right)&,& - 2 < x < - 1 \\ \left( 1 - x^{2} \right)&,& - 1 < x < 1\\ - \left( 1 - x^{2} \right)&,& 1 < x < 2\end{cases}\]
\[ \therefore I = \int_{- 2}^{- 1} \left| 1 - x^{2} \right| d x + \int_{- 1}^1 \left| 1 - x^{2} \right| d x + \int_1^2 \left| 1 - x^{2} \right| d x\]
\[ = \int_{- 2}^{- 1} - \left( 1 - x^{2} \right) d x + \int_{- 1}^1 \left( 1 - x^{2} \right) d x + \int_1^2 - \left( 1 - x^{2} \right) d x\]
\[ = - \int_{- 2}^{- 1} \left( 1 - x^{2} \right) d x + \int_{- 1}^1 \left( 1 - x^{2} \right) d x - \int_1^2 \left( 1 - x^{2} \right) d x\]
\[ = - \left[ x - \frac{x^3}{3} \right]_{- 2}^{- 1} + \left[ x - \frac{x^3}{3} \right]_{- 1}^1 - \left[ x - \frac{x^3}{3} \right]_1^2 \]
\[ = - \left[ - 1 + \frac{1}{3} + 2 - \frac{8}{3} \right] + \left[ 1 - \frac{1}{3} + 1 - \frac{1}{3} \right] - \left[ 2 - \frac{8}{3} - 1 + \frac{1}{3} \right]\]
\[ = - \left[ 1 - \frac{7}{3} \right] + \left[ 2 - \frac{2}{3} \right] - \left[ 1 - \frac{7}{3} \right]\]
\[ = - 1 + \frac{7}{3} + 2 - \frac{2}{3} - 1 + \frac{7}{3}\]
\[ = 4\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - MCQ [पृष्ठ ११८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
MCQ | Q 30 | पृष्ठ ११८

संबंधित प्रश्‍न

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int_0^1 | x\sin \pi x | dx\]

\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Evaluate the following:

`Γ (9/2)`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×