Advertisements
Advertisements
प्रश्न
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
पर्याय
4
2
−2
0
उत्तर
4
\[\text{We have}, \]
\[I = \int_{- 2}^2 \left| 1 - x^{{}^2} \right| d x\]
\[\left| 1 - x^{2} \right| = \begin{cases}- \left( 1 - x^{2} \right)&,& - 2 < x < - 1 \\ \left( 1 - x^{2} \right)&,& - 1 < x < 1\\ - \left( 1 - x^{2} \right)&,& 1 < x < 2\end{cases}\]
\[ \therefore I = \int_{- 2}^{- 1} \left| 1 - x^{2} \right| d x + \int_{- 1}^1 \left| 1 - x^{2} \right| d x + \int_1^2 \left| 1 - x^{2} \right| d x\]
\[ = \int_{- 2}^{- 1} - \left( 1 - x^{2} \right) d x + \int_{- 1}^1 \left( 1 - x^{2} \right) d x + \int_1^2 - \left( 1 - x^{2} \right) d x\]
\[ = - \int_{- 2}^{- 1} \left( 1 - x^{2} \right) d x + \int_{- 1}^1 \left( 1 - x^{2} \right) d x - \int_1^2 \left( 1 - x^{2} \right) d x\]
\[ = - \left[ x - \frac{x^3}{3} \right]_{- 2}^{- 1} + \left[ x - \frac{x^3}{3} \right]_{- 1}^1 - \left[ x - \frac{x^3}{3} \right]_1^2 \]
\[ = - \left[ - 1 + \frac{1}{3} + 2 - \frac{8}{3} \right] + \left[ 1 - \frac{1}{3} + 1 - \frac{1}{3} \right] - \left[ 2 - \frac{8}{3} - 1 + \frac{1}{3} \right]\]
\[ = - \left[ 1 - \frac{7}{3} \right] + \left[ 2 - \frac{2}{3} \right] - \left[ 1 - \frac{7}{3} \right]\]
\[ = - 1 + \frac{7}{3} + 2 - \frac{2}{3} - 1 + \frac{7}{3}\]
\[ = 4\]
APPEARS IN
संबंधित प्रश्न
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following:
`Γ (9/2)`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is