Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_0^\frac{\pi}{2} \sqrt{\sin \phi} \cos^5 \phi\ d \phi\]
\[Let\ \sin \phi = t . Then, \cos \phi\ d\phi = dt\]
\[When\ \phi = 0, t = 0\ and\ \phi = \frac{\pi}{2}, t = 1\]
\[Also, \cos^5 \phi = \cos^4 \phi \cos \phi = \left( 1 - \sin^2 \phi \right)^2 \cos \phi\]
\[ \therefore I = \int_0^\frac{\pi}{2} \sqrt{\sin \phi} \cos^5 \phi d \phi\]
\[ \Rightarrow I = \int_0^1 \sqrt{t} \left( 1 - t^2 \right)^2 dt\]
\[ \Rightarrow I = \int_0^1 \sqrt{t}\left( 1 + t^4 - 2 t^2 \right) dt\]
\[ \Rightarrow I = \int_0^1 \left( \sqrt{t} + t^\frac{9}{2} - 2 t^\frac{5}{2} \right) dt\]
\[ \Rightarrow I = \left[ \frac{2 t^\frac{3}{2}}{3} + \frac{2 t^\frac{11}{2}}{11} - \frac{4 t^\frac{7}{2}}{7} \right]_0^1 \]
\[ \Rightarrow I = \frac{2}{3} + \frac{2}{11} - \frac{4}{7}\]
\[ \Rightarrow I = \frac{64}{231}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Evaluate each of the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_2^3 e^{- x} dx\]
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.