मराठी

1 ∫ 0 2 X + 3 5 X 2 + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

उत्तर

\[Let\ I = \int_0^1 \frac{2x + 3}{5 x^2 + 1}\ d x . Then, \]
\[I = \int_0^1 \frac{2x}{5 x^2 + 1} d x + \int_0^1 \frac{3}{5 x^2 + 1} d x\]
\[ \Rightarrow I = \frac{1}{5} \int_0^1 \frac{10x}{5 x^2 + 1} d x + 3 \int_0^1 \frac{1}{\left( \sqrt{5}x \right)^2 + 1^2} d x\]
\[ \Rightarrow I = \frac{1}{5} \left[ \log \left( 5 x^2 + 1 \right) \right]_0^1 + \frac{3}{\sqrt{5}} \left[ \tan^{- 1} \left( \sqrt{5}x \right) \right]_0^1 \]
\[ \Rightarrow I = \frac{1}{5} \log 6 + \frac{3}{\sqrt{5}} \tan^{- 1} \sqrt{5}\]
shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 38 | पृष्ठ १७

संबंधित प्रश्‍न

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 


\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


\[\int\limits_1^4 \left( x^2 + x \right) dx\]


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×