Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
उत्तर
\[\int_0^1 \sqrt{\frac{1 - x}{1 + x}} d x\]
\[ = \int_0^1 \sqrt{\frac{1 - x}{1 + x} \times \frac{1 - x}{1 - x}} d x\]
\[ = \int_0^1 \frac{1 - x}{\sqrt{1 - x^2}} d x\]
\[ = \int_0^1 \frac{1}{\sqrt{1 - x^2}}dx - \int_0^1 \frac{x}{\sqrt{1 - x^2}}dx\]
\[ = \left[ \sin^{- 1} x \right]_0^1 + \left[ \sqrt{1 - x^2} \right]_0^1 \]
\[ = \frac{\pi}{2} - 1\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Evaluate :
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
Γ(4)
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`