मराठी

1 ∫ 0 √ 1 − X 1 + X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

बेरीज

उत्तर

\[\int_0^1 \sqrt{\frac{1 - x}{1 + x}} d x\]

\[ = \int_0^1 \sqrt{\frac{1 - x}{1 + x} \times \frac{1 - x}{1 - x}} d x\]

\[ = \int_0^1 \frac{1 - x}{\sqrt{1 - x^2}} d x\]

\[ = \int_0^1 \frac{1}{\sqrt{1 - x^2}}dx - \int_0^1 \frac{x}{\sqrt{1 - x^2}}dx\]

\[ = \left[ \sin^{- 1} x \right]_0^1 + \left[ \sqrt{1 - x^2} \right]_0^1 \]

\[ = \frac{\pi}{2} - 1\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Revision Exercise [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Revision Exercise | Q 17 | पृष्ठ १२१

संबंधित प्रश्‍न

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 


\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot}x} dx\] is

The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 


The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Evaluate the following:

Γ(4)


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×