Advertisements
Advertisements
Question
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
Solution
\[\int_0^1 \sqrt{\frac{1 - x}{1 + x}} d x\]
\[ = \int_0^1 \sqrt{\frac{1 - x}{1 + x} \times \frac{1 - x}{1 - x}} d x\]
\[ = \int_0^1 \frac{1 - x}{\sqrt{1 - x^2}} d x\]
\[ = \int_0^1 \frac{1}{\sqrt{1 - x^2}}dx - \int_0^1 \frac{x}{\sqrt{1 - x^2}}dx\]
\[ = \left[ \sin^{- 1} x \right]_0^1 + \left[ \sqrt{1 - x^2} \right]_0^1 \]
\[ = \frac{\pi}{2} - 1\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Evaluate :
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.