Advertisements
Advertisements
Question
Evaluate :
Solution
\[ = \left.\frac{3^x}{\log3}\right|_2^3 + C .............\left(Use: \int a^x = \frac{a^x}{\log a} + C\right)\]
\[ = \frac{3^3}{\log3} - \frac{3^2}{\log3} + C\]
\[= \frac{1}{\log3}( 3^3 - 3^2 ) + C\]
\[ = \frac{1}{\log3}(27 - 9) + C\]
\[ = \frac{1}{\log3}(18) + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
`Γ(3/2)`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`