Advertisements
Advertisements
Question
Solution
\[\text{We have}, \]
\[I = \int_0^2 \left[ x \right] d x\]
\[\text{We know that}, \]
\[\left[ x \right] = \begin{cases}0&,& 0 < x < 1\\1&,& 1 < x < 2\end{cases}\]
\[ \therefore I = \int_0^2 \left[ x \right] d x\]
\[ = \int_0^1 \left[ x \right] d x + \int_1^2 \left[ x \right] d x\]
\[ = \int_0^1 \left( 0 \right) d x + \int_1^2 \left( 1 \right) d x\]
\[ = 0 + \left[ x \right]_1^2 \]
\[ = 2 - 1 = 1\]
APPEARS IN
RELATED QUESTIONS
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Choose the correct alternative:
Γ(n) is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.