Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\pi e^{2x} \sin \left( \frac{\pi}{4} + x \right) d x \]
\[\text{Integrating by parts, we get}\]
\[I = \frac{1}{2} \left[ e^{2x} \sin \left( \frac{\pi}{4} + x \right) \right]_0^\pi - \frac{1}{2} \int_0^\pi e^{2x} \cos \left( \frac{\pi}{4} + x \right) dx\]
\[\text{Now, integrating the second term by parts, we get}\]
\[ \Rightarrow I = \frac{1}{2} \left[ e^{2x} \sin \left( \frac{\pi}{4} + x \right) \right]_0^\pi - \frac{1}{2}\left\{ \left[ \frac{1}{2} e^{2x} \cos \left( \frac{\pi}{4} + x \right) \right]_0^\pi + \frac{1}{2} \int_0^\pi e^{2x} \sin \left( \frac{\pi}{4} + x \right) d x \right\}\]
\[ \Rightarrow I = \frac{1}{2} \left[ e^{2x} \sin \left( \frac{\pi}{4} + x \right) \right]_0^\pi - \frac{1}{4} \left[ e^{2x} \cos \left( \frac{\pi}{4} + x \right) \right]_0^\pi - \frac{1}{4}I\]
\[ \Rightarrow \frac{5}{4}I = \frac{1}{2}\left[ e^{2\pi} \sin\left( \pi + \frac{\pi}{4} \right) - \sin\left( \frac{\pi}{4} \right) \right] - \frac{1}{4}\left[ e^{2\pi} \cos\left( \pi + \frac{\pi}{4} \right) - \cos\left( \frac{\pi}{4} \right) \right]\]
\[ \Rightarrow \frac{5}{4}I = \frac{1}{2}\left[ - e^{2\pi} \times \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right] - \frac{1}{4}\left[ - e^{2\pi} \times \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right]\]
\[ \Rightarrow \frac{5}{4}I = - \frac{1}{2\sqrt{2}} e^{2\pi} - \frac{1}{2\sqrt{2}} + \frac{1}{4\sqrt{2}} e^{2\pi} + \frac{1}{4\sqrt{2}}\]
\[ \Rightarrow I = - \frac{1}{5\sqrt{2}}\left( e^{2\pi} + 1 \right)\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
Evaluate each of the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
Evaluate :
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
Γ(n) is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.