Advertisements
Advertisements
Question
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
Options
a = `1/3`, b = 1
a = `(-1)/3`, b = 1
a = `(-1)/3`, b = –1
a = `1/3`, b = –1
Solution
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then a = `1/3`, b = –1.
Explanation:
Let I = `intx^3/sqrt(1 + x^2) "d"x`
Put 1 + x2 = t
⇒ 2x dx = dt
⇒ x dx = `"dt"/2`
∴ I = `1/2 int "t"/sqrt("t") "dt" - 1/2 int 1/sqrt("t") "dt"`
= `1/2 int sqrt("t") "dt" - 1/2 int "t"^((-1)/2) "dt"`
= `1/2 xx 2/3 ("t")^(3/2) - 1/2 * 2sqrt("t") + "C"`
= `1/3(1 + x^2)^(3/2) - sqrt(1 + x^2) + "C"`
But I = `"a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`
Comparing the like terms we get,
∴ a = `1/3` and b = –1.
APPEARS IN
RELATED QUESTIONS
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Prove that:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
`int x^3/(x + 1)` is equal to ______.