English

If dabC∫x31+x2dx=a(1+x2)32+b1+x2+C, then ______. - Mathematics

Advertisements
Advertisements

Question

If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.

Options

  • a = `1/3`, b = 1

  • a = `(-1)/3`, b = 1

  • a = `(-1)/3`, b = –1

  • a = `1/3`, b = –1

MCQ
Fill in the Blanks

Solution

If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then a = `1/3`, b = –1.

Explanation:

Let I = `intx^3/sqrt(1 + x^2) "d"x`

Put 1 + x2 = t

⇒ 2x dx = dt

⇒ x dx = `"dt"/2`

∴ I = `1/2 int "t"/sqrt("t") "dt" - 1/2 int 1/sqrt("t") "dt"`

= `1/2 int sqrt("t")  "dt" - 1/2 int "t"^((-1)/2)  "dt"`

= `1/2 xx 2/3 ("t")^(3/2) - 1/2 * 2sqrt("t") + "C"`

= `1/3(1 + x^2)^(3/2) - sqrt(1 + x^2) + "C"`

But I = `"a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`

Comparing the like terms we get,

∴ a = `1/3` and b = –1.

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 168]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 56 | Page 168

RELATED QUESTIONS

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]


\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×