Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^2 x\sqrt{x + 2}\ d x . \]
\[Let\ x + 2 = t^2 . Then, dx = 2t\ dt\]
\[When\ x = 0, t = \sqrt{2}\ and\ x\ = 2, t = 2\]
\[ \therefore I = \int_\sqrt{2}^2 \left( t^2 - 2 \right) t\ 2t\ dt\]
\[ \Rightarrow I = 2 \int_\sqrt{2}^2 \left( t^4 - 2 t^2 \right) dt\]
\[ \Rightarrow I = 2 \left[ \frac{t^5}{5} - \frac{2}{3} t^3 \right]_\sqrt{2}^2 \]
\[ \Rightarrow I = 2\left[ \left( \frac{32}{3} - \frac{16}{3} \right) - \left( \frac{4\sqrt{2}}{5} - \frac{4\sqrt{2}}{3} \right) \right]\]
\[ \Rightarrow I = 2\left( \frac{16}{15} + \frac{8\sqrt{2}}{15} \right)\]
\[ \Rightarrow I = \frac{16}{15}\left( 2 + \sqrt{2} \right)\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
Evaluate each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
`Γ (9/2)`
Choose the correct alternative:
`Γ(3/2)`