English
Tamil Nadu Board of Secondary EducationHSC Commerce Class 12

Evaluate the following using properties of definite integral: d∫01x(1-x)34 dx - Business Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`

Sum

Solution

Le I = `int_0^1 log  x/((1 - x)^(3/4))  "d"x`

Using the property

`int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`

I = `int_0^1 ((1 - x))/[1 - (1 - x)]^(3/4)  "d"x`

= `int_0^1 ((1 - x))/(x)^(3/4)  "d"x`

= `int_0^1 (1 - x) (x)^((-3)/4)  "d"x`

= `int_^1 (x^((-3)/4) - x^(1 - 3/4))  "d"x`

= `int_^1 (x^((-3)/4) -  x^(1/4))  "d"x`

= `[(x^(-3/4 + 1))/(((-3)/4 + 1))]_0^1 - [x^(1/4 + 1)/((1/4 + 1))]_0^1`

= `[x^(1/4)/((1/4))]_0^1 - [x^(5/4)/((5/4))]_0^1`

= `4[x^(1/4)]_0^1 - 4/5 [x^(5/4)]_0^1`

= `4[1 - 0] - 4/5 [1 - 0]`

= `4 - 4/5`

= `(20 - 4)/5`

∴ I = `16/5`

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 2: Integral Calculus – 1 - Exercise 2.9 [Page 50]

APPEARS IN

Samacheer Kalvi Business Mathematics and Statistics [English] Class 12 TN Board
Chapter 2 Integral Calculus – 1
Exercise 2.9 | Q 6 | Page 50
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×