English

Π ∫ 0 Log ( 1 − Cos X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]
Sum

Solution

\[Let\, I = \int_0^\pi \log\left( 1 - \cos x \right) d x\]
\[ = \int_0^\pi \log\left( 2 \sin^2 \frac{x}{2} \right) dx\]
\[ = \int_0^\pi \log2 dx + 2 \int_0^\pi \log \sin\frac{x}{2} dx\]
\[ Let, t = \frac{x}{2} \text{in the secong integral . then } dt = \frac{1}{2}dx\]
\[\text{When }x \to 0 ; t \to 0\text{ and } x \to \pi ; t \to \frac{\pi}{2}\]
\[I = \log2 \left[ x \right]_0^\pi + 4 \int_0^\frac{\pi}{2} \log \sin t dt\]
\[ = \pi\ log2 + 4 \times \left( - \frac{\pi}{2}\log2 \right) ...............\left[\text{Where, }\int_0^\frac{\pi}{2} \log \sin t dt = - \frac{\pi}{2}\log2 \right]\]
\[ = - \pi \log2\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 95]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 27 | Page 95

RELATED QUESTIONS

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_2^3 \frac{1}{x}dx\]

If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]


\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


`int_0^(2a)f(x)dx`


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


\[\int\limits_2^3 e^{- x} dx\]


Find : `∫_a^b logx/x` dx


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×