Advertisements
Advertisements
Question
Solution
\[Let\, I = \int_0^\pi \log\left( 1 - \cos x \right) d x\]
\[ = \int_0^\pi \log\left( 2 \sin^2 \frac{x}{2} \right) dx\]
\[ = \int_0^\pi \log2 dx + 2 \int_0^\pi \log \sin\frac{x}{2} dx\]
\[ Let, t = \frac{x}{2} \text{in the secong integral . then } dt = \frac{1}{2}dx\]
\[\text{When }x \to 0 ; t \to 0\text{ and } x \to \pi ; t \to \frac{\pi}{2}\]
\[I = \log2 \left[ x \right]_0^\pi + 4 \int_0^\frac{\pi}{2} \log \sin t dt\]
\[ = \pi\ log2 + 4 \times \left( - \frac{\pi}{2}\log2 \right) ...............\left[\text{Where, }\int_0^\frac{\pi}{2} \log \sin t dt = - \frac{\pi}{2}\log2 \right]\]
\[ = - \pi \log2\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Prove that:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
`int_0^(2a)f(x)dx`
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
`int x^3/(x + 1)` is equal to ______.