English

Evaluate the Following Integral: 2 ∫ − 2 | 2 X + 3 | D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]
Sum

Solution

\[\int_{- 2}^2 \left| 2x + 3 \right| d x\]
\[We\ know\ that\ \left| 2x + 3 \right| = \begin{cases} - \left( 2x + 3 \right) &, &- 2 \leq x \leq - \frac{3}{2}\\\left( 2x + 3 \right)&, &- \frac{3}{2} < x \leq 2\end{cases}\]
\[ \therefore I = \int_{- 2}^\frac{- 3}{2} - \left( 2x + 3 \right) d x + \int_{- \frac{3}{2}}^2 \left( 2x + 3 \right) d x\]
\[ \Rightarrow I = - \left[ x^2 + 3x \right]_{- 2}^\frac{- 3}{2} + \left[ x^2 + 3x \right]_{- \frac{3}{2}}^2 \]
\[ \Rightarrow I = - \frac{9}{4} + \frac{9}{2} + 4 - 6 + 4 + 6 - \frac{9}{4} + \frac{9}{2}\]
\[ \Rightarrow I = \frac{25}{2}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.3 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.3 | Q 5 | Page 56

RELATED QUESTIONS

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]


\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_0^\infty e^{- x} dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

\[\int\limits_0^{15} \left[ x \right] dx .\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×