English

1 ∫ 0 2 X 1 + X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]
Sum

Solution

\[\text{We have}, \]
\[I = \int_0^1 \frac{2x}{1 + x^2} d x\]
\[\text{Putting} 1 + x^2 = t\]
\[ \Rightarrow 2x\ dx = dt\]
\[\text{When } x \to 0; t \to 1\]
\[\text{And } x \to 1; t \to 2\]
\[ \therefore I = \int_1^2 \frac{d t}{t}\]
\[ = \left[ \log_e \left| t \right| \right]_1^2 \]
\[ = \log_e 2 - \log_e 1\]
\[ = \log_e 2 - 0\]
\[ = \log_e 2\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Very Short Answers [Page 115]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Very Short Answers | Q 25 | Page 115

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_0^{15} \left[ x \right] dx .\]

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot}x} dx\] is

The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


`int_0^(2a)f(x)dx`


\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×