Advertisements
Advertisements
Question
Solution
\[\text{We have}, \]
\[I = \int_0^1 \frac{2x}{1 + x^2} d x\]
\[\text{Putting} 1 + x^2 = t\]
\[ \Rightarrow 2x\ dx = dt\]
\[\text{When } x \to 0; t \to 1\]
\[\text{And } x \to 1; t \to 2\]
\[ \therefore I = \int_1^2 \frac{d t}{t}\]
\[ = \left[ \log_e \left| t \right| \right]_1^2 \]
\[ = \log_e 2 - \log_e 1\]
\[ = \log_e 2 - 0\]
\[ = \log_e 2\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
`int_0^(2a)f(x)dx`
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.