Advertisements
Advertisements
Question
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
Solution
\[\int_\frac{- \pi}{4}^\frac{\pi}{4} \left| \tan x \right| d x\]
\[ = \int_\frac{- \pi}{4}^0 - \tan x dx + \int_0^\frac{\pi}{4} \tan x dx\]
\[ = \left[ \log \left( \cos x \right) \right]_\frac{- \pi}{4}^0 + \left[ - \log \left( \cos x \right) \right]_0^\frac{\pi}{4} \]
\[ = - \log\frac{1}{\sqrt{2}} - \log\frac{1}{\sqrt{2}}\]
\[ = 2\log\sqrt{2}\]
\[ = \log2\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If f(2a − x) = −f(x), prove that
Evaluate each of the following integral:
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
Γ(n) is
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.