English

Π / 2 ∫ 0 X 2 Cos 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

Solution

\[Let I = \int_0^\frac{\pi}{2} x^2 \cos^2 x d x . Then, \]
\[I = \int_0^\frac{\pi}{2} x^2 \left( \frac{1 + \cos 2x}{2} \right)dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \left( \frac{x^2}{2} + \frac{x^2 \cos 2x}{2} \right) dx\]
\[ \Rightarrow I = \left[ \frac{x^3}{6} \right]_0^\frac{\pi}{2} + \left[ \frac{x^2 \sin 2x}{4} \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} \frac{x}{2} \sin 2x\ d\ x\]
\[ \Rightarrow I = \left[ \frac{x^3}{6} \right]_0^\frac{\pi}{2} + \left[ \frac{x^2 \sin 2x}{4} \right]_0^\frac{\pi}{2} - \left[ \frac{- x \cos 2x}{4} \right]_0^\frac{\pi}{2} + \int_0^\frac{\pi}{2} - 1 \frac{\cos2x}{2}dx\]
\[ \Rightarrow I = \left[ \frac{x^3}{6} \right]_0^\frac{\pi}{2} + \left[ \frac{x^2 \sin 2x}{4} \right]_0^\frac{\pi}{2} + \left[ \frac{x \cos 2x}{4} \right]_0^\frac{\pi}{2} - \left[ \frac{\sin 2x}{4} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{\pi^3}{48} - \frac{\pi}{8}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 31 | Page 17

RELATED QUESTIONS

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

\[\int\limits_0^2 x\left[ x \right] dx .\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Choose the correct alternative:

`Γ(3/2)`


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×