Advertisements
Advertisements
Question
Solution
\[Let I = \int_0^\frac{\pi}{2} x^2 \cos^2 x d x . Then, \]
\[I = \int_0^\frac{\pi}{2} x^2 \left( \frac{1 + \cos 2x}{2} \right)dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \left( \frac{x^2}{2} + \frac{x^2 \cos 2x}{2} \right) dx\]
\[ \Rightarrow I = \left[ \frac{x^3}{6} \right]_0^\frac{\pi}{2} + \left[ \frac{x^2 \sin 2x}{4} \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} \frac{x}{2} \sin 2x\ d\ x\]
\[ \Rightarrow I = \left[ \frac{x^3}{6} \right]_0^\frac{\pi}{2} + \left[ \frac{x^2 \sin 2x}{4} \right]_0^\frac{\pi}{2} - \left[ \frac{- x \cos 2x}{4} \right]_0^\frac{\pi}{2} + \int_0^\frac{\pi}{2} - 1 \frac{\cos2x}{2}dx\]
\[ \Rightarrow I = \left[ \frac{x^3}{6} \right]_0^\frac{\pi}{2} + \left[ \frac{x^2 \sin 2x}{4} \right]_0^\frac{\pi}{2} + \left[ \frac{x \cos 2x}{4} \right]_0^\frac{\pi}{2} - \left[ \frac{\sin 2x}{4} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{\pi^3}{48} - \frac{\pi}{8}\]
APPEARS IN
RELATED QUESTIONS
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
Write the coefficient a, b, c of which the value of the integral
Evaluate :
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`Γ(3/2)`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.