Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{2} x^2 \cos 2x d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ x^2 \frac{\sin 2x}{2} \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2x \frac{\sin 2x}{2} d x\]
\[ \Rightarrow I = \left[ x^2 \frac{\sin 2x}{2} \right]_0^\frac{\pi}{2} - \left[ - x \frac{\cos 2x}{2} \right]_0^\frac{\pi}{2} + \int_0^\frac{\pi}{2} - 1 \frac{\cos 2x}{2} d x\]
\[ \Rightarrow I = \left[ x^2 \frac{\sin 2x}{2} \right]_0^\frac{\pi}{2} + \left[ x \frac{\cos 2x}{2} \right]_0^\frac{\pi}{2} - \left[ \frac{\sin 2x}{4} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = 0 - \frac{\pi}{4} - 0\]
\[ \Rightarrow I = - \frac{\pi}{4}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Solve each of the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.