English

The Value of π / 2 ∫ 0 Log ( 4 + 3 Sin X 4 + 3 Cos X ) D X Is,2,3 4,0,−2 - Mathematics

Advertisements
Advertisements

Question

The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is 

 

Options

  • 2

  • \[\frac{3}{4}\]
  • 0

  • −2

MCQ

Solution

0

\[Let\ I = \int_0^\frac{\pi}{2} \log\left( \frac{4 + 3\sin x}{4 + 3\cos x} \right) d x ............(1)\]
\[ = \int_0^\frac{\pi}{2} \log\left[ \frac{4 + 3\sin\left( \frac{\pi}{2} - x \right)}{4 + 3\cos\left( \frac{\pi}{2} - x \right)} \right] dx\]
\[ = \int_0^\frac{\pi}{2} \log\left( \frac{4 + 3 \cos x}{4 + 3\sin x} \right) d x ..............(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^\frac{\pi}{2} \left[ \log\left( \frac{4 + 3\sin x}{4 + 3\cos x} \right) + log\left( \frac{4 + 3 \cos x}{4 + 3\sin x} \right) \right] d x \]
\[ = \int_0^\frac{\pi}{2} \log\left( \frac{4 + 3\sin x}{4 + 3\cos x} \times \frac{4 + 3 \cos x}{4 + 3\sin x} \right) d x \]
\[ = \int_0^\frac{\pi}{2} \log1 dx = 0\]
\[Hence\ I = 0 \]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - MCQ [Page 120]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
MCQ | Q 41 | Page 120

RELATED QUESTIONS

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_1^e \log x\ dx =\]

\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×