Advertisements
Advertisements
Question
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
Options
2
- \[\frac{3}{4}\]
0
−2
Solution
0
\[Let\ I = \int_0^\frac{\pi}{2} \log\left( \frac{4 + 3\sin x}{4 + 3\cos x} \right) d x ............(1)\]
\[ = \int_0^\frac{\pi}{2} \log\left[ \frac{4 + 3\sin\left( \frac{\pi}{2} - x \right)}{4 + 3\cos\left( \frac{\pi}{2} - x \right)} \right] dx\]
\[ = \int_0^\frac{\pi}{2} \log\left( \frac{4 + 3 \cos x}{4 + 3\sin x} \right) d x ..............(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^\frac{\pi}{2} \left[ \log\left( \frac{4 + 3\sin x}{4 + 3\cos x} \right) + log\left( \frac{4 + 3 \cos x}{4 + 3\sin x} \right) \right] d x \]
\[ = \int_0^\frac{\pi}{2} \log\left( \frac{4 + 3\sin x}{4 + 3\cos x} \times \frac{4 + 3 \cos x}{4 + 3\sin x} \right) d x \]
\[ = \int_0^\frac{\pi}{2} \log1 dx = 0\]
\[Hence\ I = 0 \]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.