Advertisements
Advertisements
प्रश्न
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
पर्याय
2
- \[\frac{3}{4}\]
0
−2
उत्तर
0
\[Let\ I = \int_0^\frac{\pi}{2} \log\left( \frac{4 + 3\sin x}{4 + 3\cos x} \right) d x ............(1)\]
\[ = \int_0^\frac{\pi}{2} \log\left[ \frac{4 + 3\sin\left( \frac{\pi}{2} - x \right)}{4 + 3\cos\left( \frac{\pi}{2} - x \right)} \right] dx\]
\[ = \int_0^\frac{\pi}{2} \log\left( \frac{4 + 3 \cos x}{4 + 3\sin x} \right) d x ..............(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^\frac{\pi}{2} \left[ \log\left( \frac{4 + 3\sin x}{4 + 3\cos x} \right) + log\left( \frac{4 + 3 \cos x}{4 + 3\sin x} \right) \right] d x \]
\[ = \int_0^\frac{\pi}{2} \log\left( \frac{4 + 3\sin x}{4 + 3\cos x} \times \frac{4 + 3 \cos x}{4 + 3\sin x} \right) d x \]
\[ = \int_0^\frac{\pi}{2} \log1 dx = 0\]
\[Hence\ I = 0 \]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate the following integral:
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Find : `∫_a^b logx/x` dx
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.