Advertisements
Advertisements
प्रश्न
पर्याय
0
π
π/2
π/4
उत्तर
π/2
\[\text{We have}, \]
\[I = \int_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\}dx\]
\[\text{We know since} \int f'(x) = f(x)\]
\[f(x) = si n^{- 1} \left( \frac{2x}{1 + x^2} \right) and f'(x) = \frac{d}{dx}\left\{ si n^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} \]
\[\text{Therefore}, I = \left[ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right]_0^1 \]
\[ = \sin^{- 1} \left( 1 \right) - \sin^{- 1} \left( 0 \right)\]
\[ = \frac{\pi}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f(x) is a continuous function defined on [−a, a], then prove that
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_2^3 e^{- x} dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`