Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ x^2 = t . Then, 2x\ dx = dt\]
\[When\ x = 1, t = 1\ and\ x = 2, t = 4\]
\[ \therefore I = \int_1^2 \frac{3x}{9 x^2 - 1} d x\]
\[ \Rightarrow I = \frac{3}{2} \int_1^4 \frac{dt}{9t - 1}\]
\[ \Rightarrow I = \frac{3}{18} \left[ \log \left( 9t - 1 \right) \right]_1^4 \]
\[ \Rightarrow I = \frac{3}{18}\left( \log 35 - \log 8 \right)\]
\[ \Rightarrow I = \frac{\left( \log 35 - \log 8 \right)}{6}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Write the coefficient a, b, c of which the value of the integral
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
Γ(4)
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is