मराठी

2 ∫ 1 3 X 9 X 2 − 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

उत्तर

\[Let\ x^2 = t . Then, 2x\ dx = dt\]
\[When\ x = 1, t = 1\ and\ x = 2, t = 4\]
\[ \therefore I = \int_1^2 \frac{3x}{9 x^2 - 1} d x\]
\[ \Rightarrow I = \frac{3}{2} \int_1^4 \frac{dt}{9t - 1}\]
\[ \Rightarrow I = \frac{3}{18} \left[ \log \left( 9t - 1 \right) \right]_1^4 \]
\[ \Rightarrow I = \frac{3}{18}\left( \log 35 - \log 8 \right)\]
\[ \Rightarrow I = \frac{\left( \log 35 - \log 8 \right)}{6}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.2 | Q 3 | पृष्ठ ३८

संबंधित प्रश्‍न

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


Evaluate the following:

Γ(4)


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×