Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^4 \frac{1}{\sqrt{4x - x^2}} d x . Then, \]
\[I = \int_0^4 \frac{1}{\sqrt{4x - x^2 - 4 + 4}} d x\]
\[ \Rightarrow I = \int_0^4 \frac{1}{\sqrt{- \left( x - 2 \right)^2 + 4}} d x\]
\[ \Rightarrow I = \left[ \sin^{- 1} \frac{\left( x - 2 \right)}{2} \right]_0^4 \]
\[ \Rightarrow I = \left( \sin^{- 1} 1 - \sin^{- 1} ( - 1) \right)\]
\[ \Rightarrow I = 2 \sin^{- 1} 1\]
\[ \Rightarrow I = 2 \frac{\pi}{2} = \pi\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`