Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{We have}, \]
\[I = \int\limits_0^1 2^{x - \left[ x \right]} dx\]
\[ = \int\limits_0^1 2^{x - 0} dx ...............\left( \because \left[ x \right] = 0\text{ where, }0 < x < 1 \right)\]
\[ = \int\limits_0^1 2^x dx\]
\[ = \left[ \frac{2^x}{\log_e 2} \right]_0^1 \]
\[ = \frac{2^1}{\log_e 2} - \frac{2^0}{\log_e 2}\]
\[ = \frac{2}{\log_e 2} - \frac{1}{\log_e 2}\]
\[ = \frac{1}{\log_e 2}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
Γ(1) is
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
Find: `int logx/(1 + log x)^2 dx`