Advertisements
Advertisements
प्रश्न
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
पर्याय
0
1/2
2
3/2
उत्तर
2
\[\int_0^\pi \frac{1}{1 + \sin x} d x\]
\[ = \int_0^\pi \frac{1}{1 + \sin x} \times \frac{1 - \sin x}{1 - \sin x}dx\]
\[ = \int_0^\pi \frac{1 - \sin x}{1 - \sin^2 x}dx\]
\[ = \int_0^\pi \frac{1 - \sin x}{\cos^2 x}dx\]
\[ = \int_0^\pi \left( se c^2 x - \sec x \tan x \right) dx\]
\[ = \left[ \tan x - sec x \right]_0^\pi \]
\[ = 0 + 1 - 0 + 1\]
\[ = 2\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_2^3 e^{- x} dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`