मराठी

∫ π 2 − π 4 Sin X | Sin X | D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 

बेरीज

उत्तर

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

\[ = \int_{- \frac{\pi}{4}}^0 \sin x\left| \sin x \right|dx + \int_0^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

\[ = \int_{- \frac{\pi}{4}}^0 \sin x\left( - \sin x \right)dx + \int_0^\frac{\pi}{2} \sin x\sin xdx ...................\left( \left| \sin x \right| = \begin{cases}\sin x, & 0 \leq x \leq \frac{\pi}{2} \\ - \sin x, & - \frac{\pi}{4} \leq x \leq 0\end{cases} \right)\]

\[ = - \int_{- \frac{\pi}{4}}^0 \sin^2 xdx + \int_0^\frac{\pi}{2} \sin^2 xdx\]

\[= - \int_{- \frac{\pi}{4}}^0 \frac{1 - \cos2x}{2}dx + \int_0^\frac{\pi}{2} \frac{1 - \cos2x}{2}dx\]

\[ = - \frac{1}{2} \int_{- \frac{\pi}{4}}^0 dx + \frac{1}{2} \int_{- \frac{\pi}{4}}^0 \cos2xdx + \frac{1}{2} \int_0^\frac{\pi}{2} dx - \frac{1}{2} \int_0^\frac{\pi}{2} \cos2xdx\]

\[ = \left.- \frac{1}{2} \times x\right|_{- \frac{\pi}{4}}^0 +\left. \frac{1}{2} \times \frac{\sin2x}{2}\right|_{- \frac{\pi}{4}}^0 + \left.\frac{1}{2} \times x\right|_0^\frac{\pi}{2} - \left.\frac{1}{2} \times \frac{\sin2x}{2}\right|_0^\frac{\pi}{2} \]

\[ = - \frac{1}{2}\left( 0 + \frac{\pi}{4} \right) + \frac{1}{4}\left( 0 + \sin\frac{\pi}{2} \right) + \frac{1}{2} \times \left( \frac{\pi}{2} - 0 \right) - \frac{1}{4}\left( sin\pi - 0 \right)\]

\[ = - \frac{\pi}{8} + \frac{1}{4}\left( 0 + 1 \right) + \frac{\pi}{4} - \frac{1}{4}\left( 0 - 0 \right)\]

\[ = \frac{\pi}{8} + \frac{1}{4}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.3 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.3 | Q 22 | पृष्ठ ५६

संबंधित प्रश्‍न

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×