Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 \cos^{- 1} x dx\]
उत्तर
\[\int_0^1 \cos^{- 1} x d x\]
\[ = \int_0^1 \left( \cos^{- 1} x \times 1 \right) d x\]
\[ = \left[ \cos^{- 1} x x \right]_0^1 - \int_0^1 \frac{- x}{\sqrt{1 - x^2}}dx\]
\[ = \left[ x \cos^{- 1} x \right]_0^1 - \frac{2}{2} \left[ \sqrt{1 - x^2} \right]_0^1 \]
\[ = 0 + 1\]
\[ = 1\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is