Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 \cos^{- 1} x dx\]
उत्तर
\[\int_0^1 \cos^{- 1} x d x\]
\[ = \int_0^1 \left( \cos^{- 1} x \times 1 \right) d x\]
\[ = \left[ \cos^{- 1} x x \right]_0^1 - \int_0^1 \frac{- x}{\sqrt{1 - x^2}}dx\]
\[ = \left[ x \cos^{- 1} x \right]_0^1 - \frac{2}{2} \left[ \sqrt{1 - x^2} \right]_0^1 \]
\[ = 0 + 1\]
\[ = 1\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
Evaluate the following integral:
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`