हिंदी

2 ∫ 0 √ 4 − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

उत्तर

\[\int_0^2 \sqrt{4 - x^2} d x\]
\[ = \int_0^2 \sqrt{2^2 - x^2} d x\]
\[ = \left[ \frac{x}{2}\sqrt{4 - x^2} + \frac{1}{2} \times 2^2 \sin^{- 1} \frac{x}{2} \right]_0^2 \]
\[ = \left[ \frac{x}{2}\sqrt{4 - x^2} \right]_0^2 + 2 \left[ \sin^{- 1} \frac{x}{2} \right]_0^2 \]
\[ = 0 + 2\left( \frac{\pi}{2} - 0 \right)\]
\[ = \pi\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Very Short Answers [पृष्ठ ११५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Very Short Answers | Q 24 | पृष्ठ ११५

संबंधित प्रश्न

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


\[\int\limits_1^4 \left( x^2 + x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×