Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
उत्तर
\[Let, I = \int_0^\frac{\pi}{4} \sin2x \sin3x d x ..................(1)\]
\[ \Rightarrow I = \left[ - \sin2x\frac{\cos3x}{3} \right]_0^\frac{\pi}{4} + \int_0^\frac{\pi}{4} 2\cos2x\frac{\cos3x}{3}dx\]
\[ \Rightarrow I = \left[ - \sin2x\frac{\cos3x}{3} \right]_0^\frac{\pi}{4} + \frac{2}{3} \left[ \cos2x\frac{\sin3x}{3} \right]_0^\frac{\pi}{4} + \frac{4}{9} \int_0^\frac{\pi}{4} \sin2x \sin3x d x\]
\[ \Rightarrow I = \left[ - \sin2x\frac{\cos3x}{3} \right]_0^\frac{\pi}{4} + \frac{2}{3} \left[ \cos2x\frac{\sin3x}{3} \right]_0^\frac{\pi}{4} + \frac{4}{9}I ..............\left[From (1) \right]\]
\[ \Rightarrow \frac{5}{9}I = \left[ - \sin2x\frac{\cos3x}{3} \right]_0^\frac{\pi}{4} + \frac{2}{3} \left[ \cos2x\frac{\sin3x}{3} \right]_0^\frac{\pi}{4} \]
\[ \Rightarrow \frac{5}{9}I = \frac{1}{3\sqrt{2}} + 0\]
\[ \Rightarrow \frac{5}{9}I = \frac{1}{3\sqrt{2}}\]
\[ \therefore I = \frac{3}{5\sqrt{2}}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate the following integral:
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
Evaluate each of the following integral:
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Choose the correct alternative:
Γ(1) is
Find: `int logx/(1 + log x)^2 dx`