Advertisements
Advertisements
प्रश्न
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
उत्तर
Let I = \[\int\frac{dx}{\sin^2 x \cos^2 x}\]
Dividing the numerator and denominator by cos4 x, we get:
I = \[\int\frac{se c^2 x \cdot se c^2 x}{\tan^2 x}dx\]
\[\int\frac{\left( 1 + \tan^2 x \right) \cdot se c^2 x}{\tan^2 x}dx\]
Put tan x = t
⇒ \[se c^2 xdx = dt\]
∴ I = \[\int\frac{1 + t^2}{t^2}dt\] = \[\int1dt + \int\frac{1}{t^2}dt\]
⇒ I = t −\[\frac{1}{t}\] + C
⇒ I = tan x − cot x + C
∴ \[\int\frac{dx}{\sin^2 x \cos^2 x}\] = tan x − cot x + C
APPEARS IN
संबंधित प्रश्न
If f(2a − x) = −f(x), prove that
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
If n > 0, then Γ(n) is
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:
The value of `int_2^3 x/(x^2 + 1)`dx is ______.