Advertisements
Advertisements
प्रश्न
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
विकल्प
1
0
−1
π/4
उत्तर
0
\[Let\, I = \int_0^1 \tan^{- 1} \frac{2x - 1}{1 + x - x^2} d x ................(1)\]
\[ = \int_0^1 \tan^{- 1} \frac{2\left( 1 - x \right) - 1}{1 + \left( 1 - x \right) - \left( 1 - x \right)^2} d x\]
\[ = \int_0^1 \tan^{- 1} \frac{1 - 2x}{2 - x - 1 - x^2 + 2x} dx\]
\[ = \int_0^1 \tan^{- 1} \frac{1 - 2x}{1 + x - x^2} dx\]
\[ = - \int_0^1 \tan^{- 1} \frac{2x - 1}{1 + x - x^2} dx .................(2)\]
\[\text{Adding (i) and (ii)}\]
\[2I = \int_0^1 \tan^{- 1} \frac{2x - 1}{1 + x - x^2} dx - \int_0^1 \tan^{- 1} \frac{2x - 1}{1 + x - x^2} dx\]
\[ = 0\]
\[Hence\, I = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f is an integrable function, show that
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
Write the coefficient a, b, c of which the value of the integral
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
Γ(1) is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1