Advertisements
Advertisements
प्रश्न
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
विकल्प
- \[\frac{a + b}{2} \int\limits_a^b f\left( b - x \right) dx\]
- \[\frac{a + b}{2} \int\limits_a^b f\left( b + x \right) dx\]
- \[\frac{b - a}{2} \int\limits_a^b f\left( x \right) dx\]
- \[\frac{b + a}{2} \int\limits_a^b f\left( x \right) dx\]
उत्तर
\[Let\, I = \int_a^b x f\left( x \right) d x .............(1)\]
\[ = \int_a^b \left( a + b - x \right) f\left( a + b - x \right) d x\]
\[ = \int_a^b \left( a + b - x \right) f\left( x \right) dx ...............(2)\]
\[ \text{Adding (1) and (2)}\]
\[2I = \int_a^b \left( x + a + b - x \right) f\left( x \right) d x\]
\[ = \left( a + b \right) \int_a^b f\left( x \right) d x \]
\[Hence\ I = \frac{a + b}{2} \int_a^b f\left( x \right) d x\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Evaluate each of the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Choose the correct alternative:
Γ(n) is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.