Advertisements
Advertisements
प्रश्न
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
विकल्प
4
2
−2
0
उत्तर
4
\[\text{We have}, \]
\[I = \int_{- 2}^2 \left| 1 - x^{{}^2} \right| d x\]
\[\left| 1 - x^{2} \right| = \begin{cases}- \left( 1 - x^{2} \right)&,& - 2 < x < - 1 \\ \left( 1 - x^{2} \right)&,& - 1 < x < 1\\ - \left( 1 - x^{2} \right)&,& 1 < x < 2\end{cases}\]
\[ \therefore I = \int_{- 2}^{- 1} \left| 1 - x^{2} \right| d x + \int_{- 1}^1 \left| 1 - x^{2} \right| d x + \int_1^2 \left| 1 - x^{2} \right| d x\]
\[ = \int_{- 2}^{- 1} - \left( 1 - x^{2} \right) d x + \int_{- 1}^1 \left( 1 - x^{2} \right) d x + \int_1^2 - \left( 1 - x^{2} \right) d x\]
\[ = - \int_{- 2}^{- 1} \left( 1 - x^{2} \right) d x + \int_{- 1}^1 \left( 1 - x^{2} \right) d x - \int_1^2 \left( 1 - x^{2} \right) d x\]
\[ = - \left[ x - \frac{x^3}{3} \right]_{- 2}^{- 1} + \left[ x - \frac{x^3}{3} \right]_{- 1}^1 - \left[ x - \frac{x^3}{3} \right]_1^2 \]
\[ = - \left[ - 1 + \frac{1}{3} + 2 - \frac{8}{3} \right] + \left[ 1 - \frac{1}{3} + 1 - \frac{1}{3} \right] - \left[ 2 - \frac{8}{3} - 1 + \frac{1}{3} \right]\]
\[ = - \left[ 1 - \frac{7}{3} \right] + \left[ 2 - \frac{2}{3} \right] - \left[ 1 - \frac{7}{3} \right]\]
\[ = - 1 + \frac{7}{3} + 2 - \frac{2}{3} - 1 + \frac{7}{3}\]
\[ = 4\]
APPEARS IN
संबंधित प्रश्न
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Evaluate each of the following integral:
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int x^3/(x + 1)` is equal to ______.