हिंदी

The Value of the Integral 2 ∫ − 2 ∣ ∣ 1 − X 2 ∣ ∣ D X Is(A) 4 (B) 2 (C) −2 (D) 0 - Mathematics

Advertisements
Advertisements

प्रश्न

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .

विकल्प

  •  4

  •  2

  • −2

  • 0

MCQ

उत्तर

4

\[\text{We have}, \]
\[I = \int_{- 2}^2 \left| 1 - x^{{}^2} \right| d x\]
\[\left| 1 - x^{2} \right| = \begin{cases}- \left( 1 - x^{2} \right)&,& - 2 < x < - 1 \\ \left( 1 - x^{2} \right)&,& - 1 < x < 1\\ - \left( 1 - x^{2} \right)&,& 1 < x < 2\end{cases}\]
\[ \therefore I = \int_{- 2}^{- 1} \left| 1 - x^{2} \right| d x + \int_{- 1}^1 \left| 1 - x^{2} \right| d x + \int_1^2 \left| 1 - x^{2} \right| d x\]
\[ = \int_{- 2}^{- 1} - \left( 1 - x^{2} \right) d x + \int_{- 1}^1 \left( 1 - x^{2} \right) d x + \int_1^2 - \left( 1 - x^{2} \right) d x\]
\[ = - \int_{- 2}^{- 1} \left( 1 - x^{2} \right) d x + \int_{- 1}^1 \left( 1 - x^{2} \right) d x - \int_1^2 \left( 1 - x^{2} \right) d x\]
\[ = - \left[ x - \frac{x^3}{3} \right]_{- 2}^{- 1} + \left[ x - \frac{x^3}{3} \right]_{- 1}^1 - \left[ x - \frac{x^3}{3} \right]_1^2 \]
\[ = - \left[ - 1 + \frac{1}{3} + 2 - \frac{8}{3} \right] + \left[ 1 - \frac{1}{3} + 1 - \frac{1}{3} \right] - \left[ 2 - \frac{8}{3} - 1 + \frac{1}{3} \right]\]
\[ = - \left[ 1 - \frac{7}{3} \right] + \left[ 2 - \frac{2}{3} \right] - \left[ 1 - \frac{7}{3} \right]\]
\[ = - 1 + \frac{7}{3} + 2 - \frac{2}{3} - 1 + \frac{7}{3}\]
\[ = 4\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - MCQ [पृष्ठ ११८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
MCQ | Q 30 | पृष्ठ ११८

संबंधित प्रश्न

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 


\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_0^\pi \cos^5 x\ dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is 

 


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_1^4 \left( x^2 + x \right) dx\]


\[\int\limits_2^3 e^{- x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×