हिंदी

2 ∫ 1 1 X ( 1 + Log X ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

उत्तर

\[Let\ 1 + \log\ x\ = t . Then, \frac{1}{x}\ dx\ = dt\]
\[When\ x = 1, t = 1\ and\ x\ = 2, t = \left( 1 + \log 2 \right)\]
\[ \therefore I = \int_1^2 \frac{1}{x \left( 1 + \log x \right)^2} d x\]
\[ \Rightarrow I = \int_1^\left( 1 + \log 2 \right) \frac{1}{t^2} dt\]
\[ \Rightarrow I = \left[ \frac{- 1}{t} \right]_1^\left( 1 + \log 2 \right) \]
\[ \Rightarrow I = - \frac{1}{\left( 1 + \log 2 \right)} + 1\]
\[ \Rightarrow I = \frac{\log 2}{\log\ 2 + \log e}\]
\[ \Rightarrow I = \frac{\log 2}{\log\ 2e}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 2 | पृष्ठ ३८

संबंधित प्रश्न

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Evaluate the following:

Γ(4)


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×