Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
उत्तर
\[Let, I = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan^3 x} d x ..............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan^3 \left( \frac{\pi}{2} - x \right)} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + co t^3 x} d x ................(2)\]
Adding (1) and (2)
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{1}{1 + \tan^3 x} + \frac{1}{1 + co t^3 x} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \frac{2 + \tan^3 x + co t^3 x}{\left( 1 + \tan^3 x \right)\left( 1 + co t^3 x \right)}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{2 + \tan^3 x + co t^3 x}{2 + \tan^3 x + co t^3 x}dx\]
\[ = \int_0^\frac{\pi}{2} dx \]
\[ = \left( x \right)_0^\frac{\pi}{2} \]
\[ = \frac{\pi}{2}\]
\[Hence, I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`