Advertisements
Advertisements
प्रश्न
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
योग
उत्तर
`int_0^3 ("e"^x "d"x)/(1 + "e"^x) = {log |1 + "e"x|}_0^3`
= log |1 + e3| – log |1 + e°|
= log |1 + e3| – log |1 + 1|
= log |1 + e3| – log |2|
= `log |(1 + "e"^3)/2|`
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]
\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]
\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Choose the correct alternative:
`Γ(3/2)`